.:. 草榴社區 » 技術討論區 » [花菜百科专栏]π在每个宇宙的值是否相同
本頁主題: [花菜百科专栏]π在每个宇宙的值是否相同字體大小 寬屏顯示 只看樓主 最新點評 熱門評論 時間順序
花菜


級別:精靈王 ( 12 )
發帖:12382
威望:2253 點
金錢:282765 USD
貢獻:1266 點
註冊:2020-10-24

[花菜百科专栏]π在每个宇宙的值是否相同

圆周率π是一个无理数,它的小数部分无限不循环,也就是说,它不能用两个整数的比来表示。我们常用3.14或22/7来近似表示π,但这些都只是近似值,而非精确值。那么,在其他的宇宙中,π是否也有这样的值呢?如果某个宇宙里,π不是3.14…,那么这个宇宙跟我们现在的宇宙有哪些不同呢?



要回答这个问题,我们首先要明确什么是圆周率。圆周率的定义是一个圆的周长与直径之比。也就是说,在一个平直的空间中,任何一个圆都满足C=2πr(C为周长,r为半径)。这个定义看起来很简单,但其实隐藏了一个重要的假设:空间是欧几里得空间。
欧几里得空间是指满足欧几里得公理系统的空间。欧几里得公理系统包括五条基本公理和一些推论定理。其中最重要的一条公理就是平行公理:经过直线外一点,有且只有一条直线与之平行。
欧几里得空间可以看作我们日常生活中所处的空间模型。在欧几里得空间中,三角形内角和为180度、正方形对角线相等、圆内接四边形对角和为180度等等都成立。而圆周率也恰好符合我们对圆形性质的预期:无论圆多大多小、放在哪里、怎么旋转或变换位置,其周长与直径之比都保持恒定。
但是,并非所有可能存在的空间都是欧几里得空间。事实上,在19世纪以前,人们曾经认为只有欧几里得空间才能符合逻辑和自然法则。但随着数学和物理学的发展,人们逐渐发现了非欧几里得空间。
非欧几里得空间指不满足欧几里得公理系统中某些公理(尤其是平行公理)的空间。例如,在球面上画图形时就会发现很多奇怪现象:三角形内角和大于180度、最短路径不再沿着直线走等等。



那么,在非欧几里得空间中,圆周率还会保持恒定吗?答案是否定的。在非欧几里得空间中,圆周率不再是一个恒定的常数,而是一个变量,它取决于圆的大小和位置。为什么会这样呢?原因在于,在非欧几里得空间中,空间本身是弯曲的。这意味着,在不同的地方,距离、角度、面积等都有不同的测量方法和结果。
那么在球面上,圆周率又是多少呢?答案是没有一个确定的值。因为在球面上,圆周率取决于圆的大小。如果我们画一个很小的圆(相对于球面半径),那么它看起来就像平面上的圆一样,其周长与直径之比接近于3.14…;但如果我们画一个很大的圆(接近于半个球面),那么它看起来就像一条直线一样,其周长与直径之比接近于1。
更一般地说,在任何非欧几里得空间中,如果我们画一个很小的圆(相对于空间曲率),那么它看起来就像平面上的圆一样,其周长与直径之比接近于π;但如果我们画一个很大的圆(相对于空间曲率),那么它看起来就不像平面上的圆一样,其周长与直径之比就会偏离π。


那么,在非欧几里得空间中,圆周率是如何计算的呢?一种方法是使用所谓的高斯-博内定理。这个定理告诉我们,在任何曲面上,一个小区域的高斯曲率与该区域内三角形内角和与180度之差成正比。换句话说,如果我们在一个曲面上画一个小圆,并在圆内划分若干个三角形,那么这些三角形内角和与180度之差就可以反映出这个圆周率与π之差。

赞(42)
DMCA / ABUSE REPORT | TOP Posted: 03-14 20:07 發表評論
.:. 草榴社區 » 技術討論區

電腦版 手機版 客戶端 DMCA
用時 0.02(s) x3, 12-22 20:12